专访香港理工大学超精密加工技术国家重点实验室主任张志辉:市场是检验产品影响力的“试金石”

“我们可以通过超精密加工改变一个物体的表面特性使其疏水,但是也可以稍加变化,使其可以亲水,这有点像造物者的感觉。”香港理工大学超精密加工技术国家重点实验室主任张志辉端详着手中一块加工到纳米精度的镜片说道。

实验室加工镜片所使用的仪器是天然单点钻石车刀,可以将金属材料打磨至纳米级粗糙程度,从而改变其物理特性,实现新功能。一纳米,是DNA双螺旋结构直径的一半。这个肉眼并不可见的计量单位,却是这间实验室的主角。

走进位于香港九龙尖沙咀核心区域的香港理工大学,穿过草坪广场和标志性的红砖建筑,就来到了超精密加工技术国家重点实验室。这间位于地下一层的实验室并不起眼,走进来却别有洞天,各类超精密加工仪器紧凑而有序地分别陈列在各个小房间。

在进入其中一间一万级无尘超精密测量实验室时,每个人都必须“全副武装”,换上无尘服和鞋套并通过吹气间,以防外界灰尘进入影响仪器精准度。

作为一个多学科跨领域的系统工程和当今创新科技的重要支撑技术,超精密加工技术在光电子学和机电一体化、视光、光学、通讯、生物医学工程等都有广泛应用。

“在先进光学方面,我们利用这项技术加工镜片,达到近视防控和裸眼3D的效果。生物医疗方面,可以通过这项技术加工手术刀和止血钳,使手术过程中不会黏刀,切割的伤口会较平整,创伤较小。通过这项技术,也能延长人工关节的寿命。”张志辉向记者介绍。

自上世纪90年代以来,超精密加工技术历经数十载的积淀与发展,目前全国各地很多地方超精密加工的研究“遍地开花”,建立了一系列超精密制造基地,积极寻求突破关键技术难题。在应用超精密技术及自主研发方面,我国已取得了显著的提升与进步。

1996年,超精密加工中心在香港理工大学成立。2003年,超精密加工中心发展为先进光学制造中心,致力于研究超精密加工技术,主要用于加工自由曲面先进光学元件。2010年,中心获国家科学技术部批准与天津大学及清华大学的精密测试技术及仪器国家重点实验室建立超精密加工技术国家重点实验室伙伴实验室,围绕超精密加工技术的前沿方向和国家需求开展相关的科研工作,以提升香港及内地先进光学和关键精密部件的设计、制造和测量能力。

所谓超精密加工技术,是利用不同的超精密加工工艺,例如切削、抛光和磨削来改变物体的表面形状,从而赋予物件一些新功能。

“我最初在半导体行业工作时,接触的精度是微米级,就是头发直径1%粗细的公差。之后在硕士和博士阶段,就开始接触到超精密加工技术,我接触到了一个新的、更高的精度,即纳米精度,而纳米精度就只相当于一个DNA螺旋直径的粗细。”张志辉介绍道。

“失之毫厘,谬以千里”是形容超精密加工技术追求到纳米精度的极致性的最贴切表达。超精密加工技术正是世界各国先进装备制造的关键性瓶颈技术,被誉为制造业“皇冠上的明珠”。

张志辉指出,过去产品设计往往局限于简单的形态,复杂度较低,因此制造相对容易。然而,自1996年起,产品设计领域迎来了革命性的变革,即从球面到非球面的转变。

“到了2000年,我们更是引入了自由曲面这一前沿技术。自由曲面技术允许我们运用多种复杂的表面形态,实现产品功能的多样化。”张志辉对记者表示。

然而这也带来了前所未有的挑战:随着产品复杂度的提升,加工技术的要求也水涨船高,在研究方法和新工艺上也出现了诸多难题,需要不断攻克技术难关,以满足日益增长的制造需求。

为此,实验室在香港科学园和深圳开设了分室。位于前者的实验室主力自主研发超精密加工设备、精密制造技术、先进光学和电子产品核心光学元件,负责推广相关技术的产业应用。位于香港理工大学深圳产学研基地的实验室主力承担内地项目,比如国家自然科学基金和深圳市基础研究项目,以加强与内地研究机构和企业的合作交流。

张志辉出身基层家庭,是一位土生土长的香港科学家。他坦言,当时选择科研这条路就是希望利用科技和知识创造财富,改变人生。他深谙技术转化为社会价值的重要性,坚信将先进技术融入日常生活与社会实践,可以赋予其极大的价值。

“对我们的日常生活来说,将这些技术带到社会里就很有价值,这就是为什么我在这个领域一直坚持了二十多年。”张志辉如此向记者讲述自己的科研初心。“在研究过程中我发现由此可以产生很多产品且能够赋予这些产品很多新功能,比如自清洗,即材料表面不留水,以及制造纳米精度的眼镜,将纳米环加入到眼镜中可以达到近视防控的效果。”

“近视”是儿童最常见的疾病之一,尤其发育中的青少年,近视加深,即眼球过度拉长。眼球拉长属无法逆转,若情况恶化会增加日后患上黄斑病变、视网膜脱落等并发症风险。香港中文大学的一项研究发现,香港六岁儿童近视率高达11.4%,香港也是全球近视患病率最高的地区之一。

2023年,张志辉的研发团队与一家香港本地的初创公司合作,将用于减缓儿童近视加深速度的“纳米多环离焦”近视防控镜片推向市场。该产品获得2023年瑞士日内瓦国际发明展最高殊荣“特别大奖”。

超精密加工技术在普通近视镜片中加入纳米离焦环,可以触发大脑发出信号,使眼球壁减少过度延伸,达到近视防控的效果。目前,该项技术应用已经约有2万名近视儿童和青少年受惠。

一直以来,香港高校以其扎实的基础科研成果著称,但研究成果商业化成效却不尽如人意。为了促进香港创科发展,香港特区政府推出多项措施促进产学研合作。2024至2025财政年度特区政府《财政预算案》更是提出了十大举措和超百亿港元支持香港科创发展。

张志辉指出,大学仅仅满足于完成基础研究是远远不够的,更为关键的是积极寻求与产业的深度合作。将科研成果推向市场并非一蹴而就的过程,其产业化并非大学单方面所能达成,而是需要整个产业链持份者的协同努力。

“产业链各环节的合作至关重要。很多生物医学项目,比如我们加工的人工关节,如果没有将产业连接到医院或者供应商,那么即使产品本身性能优越,也无法投入市场。”张志辉说。

“香港很多投资者很想投资工业,但是工业和其他行业不同,在工业上一定要见到产品,确认确实可行,投资者才有可能投资。如果没有办法实现一条试产的生产线,那就很难吸引投资。”张志辉强调。

张志辉认为,在研究与大规模生产之间,存在一个至关重要的试生产阶段。通过试生产过程中的深入研究,科研团队和企业能够及时发现并解决潜在问题,从而确保后续大规模投产的顺利进行。而香港具备得天独厚的条件,可在此率先开展过渡研究。一旦试产取得成功,这些技术便能迅速实现产业化,进而在内地实现更高效的大规模生产。

香港制造业有着悠久历史,随着上世纪80年代制造业向内地转移,制造业在香港经济中的地位趋于下降。香港想要重振其制造。

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注